Preliminary communication

An X-ray crystallographic study of a carbohydrate orthoester: 3,4,6-tri-O-acetyl-1,2-O-(1-exo-ethoxyethylidene)-α-D-glucopyranose

JOHN A. HEITMANN and GERALD F. RICHARDS

The Institute of Paper Chemistry, Appleton, Wisconsin 54911 (U.S.A.)

(Received March 7th, 1973; accepted April 4th, 1973)

During the formation of 3,4,6-tri-O-acetyl-1,2-O-(1-ethoxyethylidene)- α -D-glucopyranose and other similar orthoacetates, a new asymmetric center is created at C-7. resulting in two isomeric compounds. The crystal structure of the major isomer (2), m.p. $96-98^{\circ}$, displaying an n.m.r. methyl singlet at $\delta=1.71$ p.p.m. (CDCl₃), has been determined from low-temperature (approximately -193°) three-dimensional X-ray data obtained by the multiple-film, equi-inclination Weissenberg technique (CuK α radiation, $\lambda=1.54182$ Å). The structure was solved by using Patterson search methods and tangent-formula recycling techniques, and the block-diagonal, anisotropic refinement (fixed hydrogen parameters obtained from difference maps) was terminated at a conventional R index of 0.068 for 1680 observed reflections. One formula unit (C₁₆O₁₀H₂₄) comprises the asymmetric unit in a monoclinic unit-cell having a=7.649(4), b=14.465(5), c=8.212(3) Å, $\beta=96.26(7)^{\circ}$ (En-293°) and space group P2₁. The atomic coordinates for carbon and oxygen atoms are given in Table I.

Considering the dioxolane ring as a plane of reference, this isomer was found to have a configuration in which the ethoxy group is *trans* (exo) to the glucopyranose ring (Fig. 1). The shape of the dioxolane ring can best be described as an envelope form, with four atoms approximately planar, and O-2 offset 0.46 Å toward the glucose side of the plane.

The D-glucopyranose ring approximates a 3S_5 skew conformation 1 , but there is some flattening of the skew conformation in the vicinity of C-1 and C-2. This flattening can be considered a slight departure toward a $B^{3,0}$ boat conformation in this part of the pyranoid ring. A smaller departure toward a $B_{5,2}$ boat conformation appears to be present in the vicinity of C-5. The skew conformation of the pyranoid ring causes the C-3 acetoxyl group to be oriented axially. The C-4 acetoxyl group is quasi-axial (between axial and equatorial), and the C-5 substituent is equatorial.

Bond distances (standard deviations, 0.008 and 0.007 Å for carbon—carbon and carbon—oxygen bonds) in 1 are similar to those found in other α -glycosides². Bond angles (standard deviation, 0.4°) in the pyranoid ring at C-1, C-2, and C-3 appear to be

TABLE I
FRACTIONAL ATOMIC COORDINATES FOR THE CARBON AND OXYGEN ATOMS IN 1

Atom a	Fractional atomic coordinates		
	x	у	z
C-1	0.25214(68)	-0.05030(37)	0.44810(59
C-2	0.20814(66)	0.05309(39)	0.45552(57)
C-3	0.30494(74)	0.11323(37)	0.34276(62)
C-4	0.31588(72)	0.07209(38)	0.17265(61)
C-5	0.26364(72)	-0.03038(38)	0.16286(61)
0-5	0.33540(48)	-0.07372(26)	0.31032(41)
C-6	0.33647(78)	-0.07814(40)	0.02280(64)
0-1	0.08363(48)	-0.09381(25)	0.43832(42)
O-2	0.02686(46)	0.05801(25)	0.40180(41)
C-7	-0.04744(69)	-0.02541(37)	0.45080(62)
C-8	-0.21021(78)	-0.04787(40)	0.34233(65)
0-9	-0.07506(50)	-0.01205(27)	0.61541(41)
C-10	-0.13557(93)	-0.09116(46)	0.69917(73)
C-11	-0.18563(82)	-0.05993(50)	0.86013(72)
O-3	0.48273(47)	0.12381(27)	0.42020(41)
C-3 '	0.51091(70)	0.19839(38)	0.51916(60)
C-3 "	0.69666(76)	0.20102(42)	0.59360(67)
O-3 '	0.39900(48)	0.25498(27)	0.53711(42)
0-4	0.19951(50)	0.12407(29)	0.05839(40)
C-4 '	0.25554(79)	0.14971(38)	-0.08576(66)
C-4 "	0.11986(78)	0.20223(42)	-0.18918(66)
O-4 '	0.40108(52)	0.12888(34)	-0.12327(45)
0-6	0.25599(52)	-0.16823(27)	0.00512(43)
C-6 '	0.31515(80)	-0.22367(43)	-0.10750(64)
C-6 "	0.22569(81)	-0.31490(42)	-0.11609(71)
O6'	0.42691(65)	-0.19973(33)	-0.19163(56)

 $[^]a$ See Fig.1. Primed numbers refer to acetyl groups; doubly primed numbers refer to methyl groups of acetyl groups.

larger (3.3 σ , 2.8 σ , 2.8 σ) than the average values of 109.2, 110.5, and 110.5° reported by Arnott and Scott². There is some structural difference between the O-1 and O-2 sides of the dioxolane ring. The angle at O-1 (109.2°) is significantly larger than the angle at O-2 (106.3°). There is a large difference (12.5 σ) between the value of 110.3° for O-1-C-7-O-9 and the value of 105.3° for O-2-C-7-O-9.

REFERENCES

- 1 For explanations of the conformational designation, see L. Hough and A. C. Richardson in *Rodd's Chemistry of Carbon Compounds*, S. Coffey, ed. 2nd ed. Vol. 1, part F, Amsterdam, Elsevier Publishing Co., 1967, p. 91.
- 2 S. Arnott and W. E. Scott, J. Chem. Soc., (Perkin II), (1972) 324.

Fig.1. Perspective view from the $\pm b$ direction, showing ring conformations and isomeric configuration in 1.